Accuracy of proximity correction in electron lithography after development
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The established methods after Parikh [M. Parikh, IBM J. Res. Dev. 24, 438 (1980)] allow a
dose correction using the “Two Gaussian Model” by considering the parameters a, B, and 1. A
guaranteed accuracy after development cannot be given for these methods because the
development process, depending on resist type, thickness and contrast, is not taken into account.
In order to calculate a final guaranteed accuracy considering a, B, 7, and the full resist
development process, we did a calculation in following steps. First, we calculated the proximity
correction just for backscattered electrons by the method of “‘simple compensation™ [V. V.
Aristov, A. A. Svintsov, and S. I. Zaitsev, Microelectron. Eng. 11, 641 (1989)]. In the second
step, we simulated the proximity effect after development (modeling) with the before corrected
dose distribution, but now considering ail parameters: a, j3, 7, thickness fi, and contrast y of
positive resist. This leads to a guaranteed accuracy § (maximum structure deviation) for a given
design rule L using the correction method of simple compensation. This guaranteed accuracy
can be expressed in dimensionless coordinates 8/a = f(L/a,H/a,1,y). So the accuracy of the
electron lithography in this approach is determined by the beam size, characterized by a. Simple
compensation results in the accuracy equal to a fraction of a. A better proximity correction
below the guaranteed accuracy is possible by using simple compensation in iteration and by

correcting for @ inside a small structure frame.

l. INTRODUCTION

Proximity correction means to calculate a required pri-
mary exposure dose distribution in order to obtain an even
absorbed dose inside all structures considering the contri-
bution of backscattered electrons, beam size, and forward
scattering.

Many studies have been done in this field, suggesting
different correction methods. But no method allows to cal-
culate a guaranteed final accuracy especially by taking into
account the process of resist development, except the
method of simple compensation which was introduced by
Aristov et al.'?

This work describes the method of simple compensation
in detail and a theoretical proof of its guaranteed accuracy.

Il. FORMULATION OF THE PROBLEM OF
PROXIMITY EFFECT CORRECTION

The general problem proximity correction can be de-
fined as follows. Given is a two-dimensional (2D) x,y
structure consisting of nonintersecting regions (,, I
=1,2,...,N, shown in Fig. 1 by solid lines. Exposure doses

are

T(x,»)=0, x,ye0,
T(xp)=0, xpQ. ’

After development during time ? the resist projection onto
the substrate surface (plane x,p) represents structure Q¥
comprising the elements QF shown in Fig. 1 by dotted
lines. We suggest that the error 6 should be defined by the
maximum distance between the boundaries of structures ¢

and Q.
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The problem of the correction is to find such distribu-
tion of exposure doses T'(x,y) that after exposure and de-
velopment the errors of the whole lithographic process 6
would be less than a prescribed or desirable value.

Iil. EXPOSURE AND DEVELOPMENT MODELS

Absorbed dose distribution D(r), r=(x,p,z), in the re-
sist depends linearly on exposure dose T'(x,y). For correc-
tion it is generally assumed that D is independent on resist
depth z,* which leads to

D(x,y)/D’= J‘ I(x—x"y—y ) T(x"y')/Tdx" dy'.
(1)

D" and 7° are absorption and exposure sensitivities of a
resist, respectively. The proximity function I(p), p=(x,y),
is written as a sum of two Gaussians (Fig. 2),

_11 (p)+nly(p)

ey =—"rrm
1 1 P\ 1 P’
“zirr [@oe( ) pew( )} @
p2=-¥2+}’2t

which are interpreted as contributions of primary beam,
I,(p), and backscattered electrons, /,(p). Here /, I, and
I, are normalized on unity. The primary beam is concen-
trated in the area of radius a and the backscattered one in
the area of radius 8, with a<f. 7 characterizes the contri-
bution of backscattered electrons to the exposure in a large
area. a and B are the characteristic lengths of the exposure
process.
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FIG. 1. Structure Q* (dashed line) occurs on the substrate surface instead
of given structure Q (solid line) with the error & which is according
definition equals to maximal value of the deviation. When determining the
characteristic structure size, the circle should be first rolled along the
inside element boundary and then along the outside boundary.

We use the Two Gaussian Model due to several reasons.

First, two contributions have clear physical meaning (pri-

mary electrons and backscattered ones). Second, experi-
mental measurements and simulation of absorbed dose are
described by the Gaussian model very well.* And third, the
requirement for a third Gaussian contribution in some ex-
periments in our opinion can be addressed to an influence
of the development process which usually is not taken into
account in measurements of proximity function. In Ref. 5,
it was shown that considering resist development the third
Gaussian disappeared.

An independence of proximity function /(p) on depth z
is a good approximation due to the fact that for conven-
tional beam energies the travel range of the electrons is
much higher than the resist thickness H°. Therefore it is
possible to neglect low-angle spreading of a primary beam.
In any of the cases, we assume the value of the beam size
at the interface between resist and substrate to give an
upper estimation of a.

Because -@ is normally much smaller than 8 and than
the resist thickness AH°, it can be assumed (this will be
shown) that it causes an edge effect only, and therefore the
correction can be done separately just mSIde a small struc-
ture frame in a secondary step.

Considering first the backscattering eﬂ'ect only (de-
scribed by B and 7), it is possible (according to the argu-
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F1G. 2. Proximity function /() consisting of two Gaussians with char-
acteristic lengths a and g.
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ments of Ref. 2) to substitute the first Gaussian by & func-
tion. As a result the absorbed dose distribution Eq. (1) will
take the form

. R Y . , .
(l+1}}U[x,_PJ/1J'=1"(XJ)/T”+1}J I(x—x"y—y)

x T(x'y')/Tdx" dy'. (1a)

Liquid development of positive resists is adequately de-
scribed by the model of isotropic local etching®® (ILE
model) which assumes that the velocity of resist boundary
movement is independent of the boundary form (locality
of etching) and the direction of the boundary (isotropy of
etching), but defined only by development rate V ar the
point which the boundary passes through at a given mo-
ment. Development rate V, in turn, is defined by absorbed
dose distribution D and the dose characteristic of the resist

written as®

V=Vo(D/D")?, (3)

where y is the contrast of positive resist.
In the ILE model the resist surface evolution®
scribed by

T(Ser) =1, (4)

is de-

where S is the initial boundary position and 1 is a devel-
opment time. The solution of Eq. (4) with respect to point
r={x,y,z} specifies the form and position of resist surface
at time ¢. As shown in Ref. 6, the function 7(S,7) is re-
lated to rate field ¥'(r) by the expression

(5)

7(S,r) =min
r0ESg

where the integral is so-called Fermat integral. 7(Sy,r) is
the time of boundary passage through point r and is de-
fined in two steps (called in Ref. 6 as the modified Fermat
construction). First, we find the trajectory connecting
ro€S, and r on which the Fermat integral has a minimum,
then the minimum value of 7 is found among all the points
of ry on initial surface S;. The examples of the analytical
and numerical solutions based on Eqs. (4) and (5) of some
development problems are illustrated in Ref. 7. The prob-
lem [Egs. (4) and (5)] allows simple 2D solution’

L, (¥ (x0) /

min J‘ alf1/v(r]i.

H—V(xy)t+

z(x,!) =min
X

V(o) P—1}'2 da|

when the rate of the development depends only on lateral
direction (e.g., x axis) and is independent of depth (z
axis), ¥="¥(x). An effective numerical 2D algorithm was
developed' as application of Eq. (6).

As an example of ILE model application, we consider
the development of a halfspace (z<0) with step rate
function’

Vi, x<x0,

V(ir)=

Vi>V,. 7
V;, X>XGO. 1> V3 (7
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FIG. 3. The shape of resist after development for some time 1 (a) with
step rate function ¥ represented on (b) [see also Eq. (7)] consists of two
planes jointed by inclined plane.

The surface of resist after development is shown in Fig. 3.
It consists of two plane parts moving with velocities ¥ ; and
¥, and an inclined boundary between both regions with an
. angle ¢ to the planes [cos($) =V,/V].

A real rate distribution of course is much more compli-
cated and the solution obtained will be explored below to
estimate development errors. To use the simple distribu-
tion [Eq. (7)] and the corresponding solution it is neces-
sary to formulate an important statement about ILE which
was proved in Ref. 6.

Assuming there are three samples of identical initial
shapes z,(x,9,0), z,(x,,0), z;(x,,0), but with different de-
velopment rates,

Vj(f)byztf)>V3(’), (8)

then it follows for resist surfaces

zi(xlyst) <22(x,y.fj <zs(x:.}’,f}, (9)

¢.g., the second surface lies always between the first and the
third one (see Fig. 4). We intend to use (Sec. V) step
functions for ¥, and V; to restrict real distribution (v,)
and try to get simple solutions z, and z; to estimate the
deviations (z,) in the development.

Below we will use dimensionless variables

D/D°= D,

T/T°=T.

Using the dimensionless variables one obtains that after
exposure of a large rectangle with exposure dose 7'=1 the
absorbed dose D is equal to 1 and in the middle of the
rectangle resist is developed down to the substratg (during
time t=1;).

IV. 3D SIMULATION OF THE DEVELOPMENT

The development simulation is a convenient tool for
research and industrial applications. For known T'(x,y),
I, and dose characteristic (y,D°), it is principally possible
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FIG. 4. Under condition ¥ (r) > ¥,(r) > ¥,(r), the profiles conserve the
relation ;> 2; > z; at anytime.

to calculate the resist profile at any moment during devel-

opment, but practically this 3D problem is very difficult.
To provide the possibility of development simulation after
proximity correction the 2D method for the 3D case v
=V(x,p)] was extended. For this we use a set of cross
sections of the resist. Each cross section has to contain a
vector of rate gradient. In case of step function the latter
means that the cross section is perpendicular to the level
contour. And now it is possible to solve the development
problem of reduced dimensionality in each cross sectio

separately using 2D algorithm mentioned above. '

V. DETERMINATION OF GUARANTEED ACCURACY

Due to monotonic relation of ¥ and D [Eq. (3)] it is
possible to reformulate property [Eqs. (8)-(9)] in ab-
sorbed dose terms: if

D, (r) > Dy(r) > Ds(r),

then

(10)

zi(x 1) <z(x 1) <z3(x,0,0). (11)
This gives us the basic idea to take into account the influ-
ence of development. It is necessary to find two dose dis-
tributions D,;,(7) and D,,.(r) which fit the following in-
equalities,

Dpin(r) < D(r) < Dpyx(7)

for a distribution D(r) generated by a correction method.
D, and D, can be chosen in different ways. The choice
of lower and upper estimations D;,(7), Dpn.(r) has to
provide contradictory conditions. On the one hand, it is
very desirable that these two functions D, and D,,,
would be as simple as possible in order to calculate the

(12)




a 5- 0 ‘L
2 D F————~— - — — - _Omex(X]
§ ‘I Dpmin(X)
o in
° D:'nin
0
s | Lt Diax
K]
e
Ofmin
]
b. — z JL 1 X
3 |
s M
[":]
[
7]
[=
x
<
S
w
I
2
______ L distance X

FIG. 5. The upper estimations D,,,(x) and the lower one D,,.(x) (a),
result to profiles z,,,, and z,, (b). The quantity & is the upper estimation
of an error due to development.

development profile. On the other hand, D, and D,,,
have to be as close to D as possible in order to make upper
and lower estimations of profile more accurate.

With 6 function instead of /, (approximation: a=0)
there is a discontinuity of D along the boundary of ele-
ments Q; The following choice of D, Dy, for D(r) is
_ convenient

e X080 (outside Q)
DY, xyeQ (inside Q) ’

D, xyeQ (outside Q)
Dy (n)=1{ . ,

Dr.., xyeQ (inside Q)
where D, Dijiny Dinaxs Diax are constants. Then distribu-
tions of development velocity are step functions and the
result of development can be easily obtained (Fig. 5) using
solution shown in Fig. 3. The lateral shift between two
profiles 6 is given by

( W@‘o-ﬂo)

Dm(r) =

(13)

o Ve =17 i
and using dose characteristics [Eq. (3)] it follows,
('Djmnan Tl
H, (15)

b= [ {D:ax/D:rr:ax)zT_ 1 ] 12

[note that due to units definition ¥°=H"/1, i:l Egs. (3)
and (15)]. The quantity 8 is the upper estimation of error
due to development and has physical meaning if the inside
development rate V% > H°/t; and the outside development
rate V< <H/t,. Now a proximity effect correction in-
cluding development can be formulated in absorbed dose
terms only (a) D% >1 (guarantees development up to the
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substrate surface inside of elements); and (b) DS, <1 (to
conserve resist on substrate outside of elements).

To provide minimal error §, it is necessary that (¢) D’;‘m
as close to unit as possible; and (d) Df,, <1 as close to

Vi. GUARANTEED ACCURACY OF LITHOGRAPHY
WITHOUT ANY CORRECTION

It would be very desirable to have a criteria for need of
any correction. Each particular structure will have its own
specific error, and inside each element the errors will be
different. The upper estimation of such errors (guaranteed
accuracy) will be given below so after comparison of this
value with desirable accuracy of any particular structure it
is possible to decide whether correction is necessary or not
at all.

Without correction [and under conditions (a)-(d)] the
exposure dose is

T(xy)=1+7n, xyeQ,

(16)
T(xy)=0, xpeQ.
Thqrefore, values of the absorbed dose in internal and ex-
ternal parts of structure lie in the intervals

1I<D(xy)<1+1n, x,peQ,

0<D(xp)<n, xpaQ.

The latter follows Eq. (1a) after the substitution of Eqgs.
(16) in Eq. (1) for simple limiting structures: isolated
small circle and a similar hole in a large rectangle.

So we can use the following dose constants in Eq. (13),

'D::in=0’ X.LNQ
Dmi"(r) = Hlmnm= 1, x,}'EQ !
X
=7, x'.VﬁQ
Dpan(r) = | p .
max (7) Dlm___l_i_n’ I,_VEQ .
To estimate the error of development we use the esti-
mation method of Sec. V. According to Eq. (18)
Dro=1+n, Dn.u/Dhu=(1+7)/7, and instead of Eq.
(15) we find for the overdevelopment error &,

(17)

(18)

L (4pr-1
N Y T

This is a general relation which is valid for upper estima-
tion of development distortion for a structure exposed
without any correction. It demonstrates clearly, an influ-
ence of initial thickness of resist H°, resist contrast y, and
scattering process (parameter 1) on development distor-
tion. The correction for high-contrast resist (y= o0 ) is not
necessary if the backscattering coefficient 1 is smaller than
one, because according to Eq. (19), §=0. Actually the
contrast of any resist is not infinite therefore distortions
due to development are large and distinction AD=(1—17)
between internal (x,peQ) and outer (x,p4Q) values of dose
are not sufficient for precise lithography. For y=5, n=0.9
Eq. (19) gives

(19)
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8=0.5H°. (20)

We see now that even for a resist with rather high contrast,
¥=35 (whereas the usual value is about 2) the development
“washes out” the boundary shape and the lateral shift & is
of the order of initial thickness of the resist H°.

VIl. METHOD AND GUARANTEED ACCURACY OF
SIMPLE COMPENSATION

In case of @ =0, the solution of Eq. (la) is a solution of
correction problem according to (a)-(d) conditions. The
solution T'(x,p) of Eq. (la), for D(x,y)=1, inside the
structure provides an accuracy §=0. The solution exists at
least in the case of i < 1, it is positive and can be obtained

as a result of infinite (A=) iterations
T(xy)=T"(xy),

Th+1s_

i VA

P fg L(x—x'y—y" ) TH(x' " Ydx' dy’,
=1 xyeQ
0, xyeQ

il

(21)
for any initial distribution 7°(x,p). The finite number of
iterations gives approximate solutions of Eq. (1a).

The method of simple compensation suggested in Ref. 2
is the first iteration of Eq. (21),

T(x,p)

14+7m—7 J; L(x—x"y—y")dx' dy', xyeQ

0, x,yaQ
. (22)
with initial distribution,
L xpeQ
T(x,p) = 0, xpeQ (23)

The simple compensation method considers only the part
of absorbed dose corresponding to the backscattered elec-

trons. The advantage of the method is the possibility of -

calculating of a guaranteed accuracy considering the de-
velopment process and primary beam size a (see below).
The simple compensation gives small errors comparable
with a size. To prove this we will estimate at first the
accuracy under condition a=0 considering of the develop-
ment. In Sec. IX, the guaranteed accuracy for a=~0 will be
calculated. The errors of numerical realization will be de-
termined also. '

Let us use the method of Sec. V one more time. Due to
condition a=0, T(x,p) in Eq. (1a) should be m’ostituted
by distribution [Eq. (22)] to obtain absorbed dose distri-
bution, D

1+79°P(1,0)/(1+7), x.yeQ

DM =\0p(n/(14m).0),  xpeQ°

(24)
where
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|
P(a, Q)= J’Q dx' dy' I,(x—x",y—yp")
—a [ ax'dy’ I,(x—x'.y—y")

X J. dx" dy" I(x'—x",y' —y"). (25)
e
It is seen that as in Sec. V, the dose distribution D(x,y) has
a discontinuity along element boundaries but now the
value of the step is not constant. The upper and lower
estimations of D(x,y) in Eq. (24) are determined by the
maximum and minimum values (with respect to a struc-
ture @) F of the functional P(a,Q) which are calculated in
the Appendix as function of a. The result of the Appendix
leads to the following dose constants in Eq. (13) for arbi-
trary structure Q,

‘D:rjl‘in:o’ XJEQ
Paial x5} = D=1, xyeQ °
3
« _ 1 n
m‘“'{1+q}+0‘32 arm? x,y,6Q
Doy (x,y) = 7
Dr =14032 ——, x,
(26)
For example, even in the case =1, these constants are
b Dhin=0, x.yeQ
min{xay)" D::in=1- x,yEQ’
DG, =0.58, xyeQ
Doax(xp)=1{ . .
Dy =116, xyeQ

For a structure corrected by simple compensation the cor-
responding maximum error 8y, (deviation of the achieved
from the given structure) for y=2, 7=0.9 after Eq. (15)
is - .

8, <0.073H°. (27)

Thus, e.g., for H°=0.5 pm the error cannot exceed guar-
anteed accuracy 8,=0.036 um still assuming a=0.

Viil. REALIZATION OF THE SIMPLE
COMPENSATION

The realization requires a division of structures in sub-
structures g; with constant exposure dose values T. A pre-
liminary dividing structure in parts g; (for example, per-
formed manually) and the calculation of T, as average
values of T'(x,y), Eq. (22) can be used. But in this case
additional error of numerical realization in absorbed dose
is proportional to /,/B, where /, is the characteristic size of
substructure elements after dividing. We suggest to use
natural dividing by isolines.

The method of simple compensation is realized as a
package of routines and can be applied to any structure
which can be represented by set of polygons.

The numerical procedure consists of following steps.
(1) Calculation of T'(x,y) using Eq. (22). (2) Determina-




tion of the isolines of the exposure dose T'(x,p) =7, with
equal step AT. These isolines divide the structure ¢ into
substructures (zones) g; with exposure times being equal
to the maximal value of T'(x,p) in the corresponding zone

to prevent “underdevelopment” inside of the structure Q.
(3) Approximation of isodoses with polygons. (4) Dis-
playing of the dose distribution using color coding. (5)
Preparation of calculated data in format suitable for a
lithographic machine.

The package includes algorithms for simulation of 3D
development and presentation of deve!opment data on dis-
play. All this is implemented in the software package
PROXY”'® which runs on a PC.

The total error §,,, after the correction is a sum of error
of the simple compensation method Eq. (22), the error of
approximation T'(x,y) by T; with step AT and the accu-
racy of approximation of the smooth isoline by polygoen,

8T. For estimation of the total error using Eg. (15) it
should be used
Df:in=0’ x!ﬁQ
Drru'n( )= ) (28)
PI= D =1-8T, xyeQ
Dpux(p)
A By 7 N (AT +8T)
ma = ) T T T Ut
x,yaQ
== 4 . (29)
D" =1+0.32 1 + (AT +67)
max . {1+n) ’
x,yeQ

In comparison to Eq. (24), the last equation contains ad-
ditional terms which are related to the numerical ap-
proach. For example if y=2, =0.9, AT=0.1, T =0, and
a =0, the substitution of the values from Eq. (29) into Eq.
(15) leads to the guaranteed accuracy of the realized
method '

S5 =0.127H°. (30)

The increase of 8, in comparison with 6,. Eq. (27), dem-
onstrates the influence of numerical errors which can be
reduced by usage of smaller values of AT and 8T.

Comparing with established methods after Parikh,® the
method of simple compensation gives direct solution of
correction problem and prevents a large system of linear
equations to be solved. It eliminates an ambiguity of divid-
ing of the initial structure into small rectangles and a guar-
anteed accuracy is available,

The simple compensation is the first iteration of Eq.
(21) only. PROXY can also be used for furthel'iterations
[Eq. (21)], where each step considers the previous calcu-
lated exposure dose distribution, leading finally to a stable,
self-consistent exposure dose map. This iteration method
can be applied either for the calculating zones for a given
set of exposure levels T; or for given zone shapes (like
rectangles, for example), which are considered as fixed
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substructures for calculating the required exposure dose.
But the guaranteed accuracy 1s not available for this pro-
cedure and the errors of the approximations AT and 8T
restrict the positive effect of the further iterations.

IX. INFLUENCE OF THE PRIMARY BEAM SIZE

To consider the case @40 a reformulation of the initial
Eq. (1) is needed. It is possible to rewrite it in the equiv-
alent form

1

b =157

T(x'y’)

f Ii(x—x"y—y')
+1? J- Ij(x!'_xﬂ’yl'_yﬂ)
x T(x”,\y")dx” dyﬂ

dx' dy’, (31)

WIIETE

1 P’
I = exp| — .
ip) 7= P( B )
After expansion in parameter a’/B° and neglecting with

terms of the order of a*/f” one obtains /;=1, and instead

of Eq. (31)

1
D(xw)=(1+n) f ILix—x"y—y")|T(x'y")

+TF f Iztx)_x”l},l_y")
x T(xﬂ’},ﬂ)dx” dy"

dx’ dy’. (32)

The content of square brackets is ideal (a=0) dose distri-
bution [see Eq. (22)]. Therefore a real distribution D*
(with a=%-0) is related with distribution in case a=0by a
convolution with a-Gaussian;

Da=IlD.

After convolution the sharp step in ideal dose distribution
D is washed out into a smooth step with transition length
of the order of a.

The analytical solution [Eq. (15)] is not valid now, and
therefore, we use more complicated procedures using the
limiting elements A, B, and the characteristic size of struc-
ture L to calculate the guaranteed accuracy like it was
done in Ref. 2 for the calculation of the guaranteed accu-
racy without any correction.

According to Ref. 2 the characteristic size L of a struc-
ture @ is the maximum diameter of a circle (Fig. 1), which
can be rolled twice along the boundary of each structure
element and tangent to each boundary point. During the
first rolling, the whole circle lies inside elements of @, and
it has to lie outside elements of Q during another rolling.
The characteristic size of structure characterizes the nar-
rowest places of a structure by one size and is the universal
characteristic of a structure. The limiting elements are a
couple of simple structures with well-defined characteristic
sizes, Fig. 6. In Ref. 2, Aristov ef al. considered a circle of
radius R (element A) and a circle hole of the same radius
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FI1G. 6. Limiting elements A and B8 for general type structures of charac-
teristic size L. The crossharched regions are those to be exposed in lithog-
raphy. The dashed line shows resist projection on the substrate surface
after lithography.

(element B). The characteristic sizes L of both elements
are equai to ZR. For a rectanguiar structure, it is more
convenient to use another couple, a square and a square
hole of L size, for linear structures, a strip and a slot are
more convenient.’

The upper estimations D%, (the structure Q) and
D2 (the element B) of real corrected dose distributions
D” and D® are given by convolution obtained by simple

compensation at a=0 Dy,,, Da,, with a-Gaussian /,,

DE(p) = fg ' 1 (p=p") Das "),

(33)
Dk ()= [ dli(p=p" ) Dhu(p),

Here and below, we use reduced notation

dp=dxdy, (p—p')=(x—x"p—y').

According to definition of the limiting elements, the el-
ement B covers any structure with the same characteristic
size L (e.g., QCB), providing the circle is adjacent to a

point of the element boundary and lies outside the struc-
ture, therefore, :

D‘;‘aa;{p) <Darr:a (pJ

for any point of the structure Q. Similar to Eq. (33), we
find

D, (p) = L dp' I (p—p")DCu(p"),

(34)
D (p) = L d’p'1(p—p" ) Dpin(p"),
and for any point of the structure
D (p) 2D (p).
Finally, ’
D (p) <Din(p) <D*(p) <Digo (p) <Dipai(p),  (35)

after development of B and A4 with exposure dose distribu-
tions D&% (p), D5 (p) for time ¢ the exposed substrate
will comprise (Fig. 6): A* is the whole plane with a cut out
circle of diameter L,, B* is a circle of diameter L. Gen-
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erally speaking, L, and Ly are not equal to L because of
the proximity effect and development. Varying develop-
ment time ¢, it is possible to choose such limiting parameter
r* that the “‘underetching” and “overetching” errors are
equal and

IL_LAI = IL_LBI =26.

After exposure of the structure Q of characteristic size L
with exposurz dose D° after the simple compensation and
development under limiting condition ¥, the errors of the
lithography will be smaller than in case of elements 4 and
B due to Eq. 35) and arguments of Sec. V. Therefore, A
and B were called limiting elements and the error of their
reproduction is guaranteed accuracy of the simple compen-
sation method with influence of a and development,
asc{a).

To calculate 8..(a) exposure doses [after Egs. (21),
(34), and (35)], absorbed doses D%, D% and the corre-
sponding development rates ¥ (x) should be determined in
the cross sections of the elements 4 and B passing through
the center. Then, 2D development problems [Eq. (6)]
should be solved, two profiles, namely, z,(x,r) and zgz(x,7)
should be found, and development time /* should be de-
termined at which the value of underetching of element 4

is equal to overetching of element B,
ZA(L/Z-ﬁsc,!) =28(L/2_5S€!I) =Zqubstr *

Zoupsie 18 @ coordinate of an interface of resist-substrate.
These two equations are sufficient to find the values 8.
and r*. Considering that a0 results in smoothing of dis-
continuities in dose distributions the analytical method of
Sec. V is not valid now, therefore a numerical procedure
was used to calculate §.. The guaranteed accuracy is a
function of many parameters like L, @, H°, ¥, and 7. Ac-
cording to the Appendix, the dose distribution and conse-
quently development [Eq. (6)] does not contain the 8
value, therefore it is possible to reduce numerical calcula-
tions using dimensionless variables 8,./a and L/a. The L
dependence of 8. is shown in Figs. 7-9 for a set of resist
thicknesses, H°, resist contrast, ¥, and parameter 7, respec-
tively. The calculations show weak dependence of &, on
resist contrast. A variation does not exceed 0.2a, for a
=0.1 um the variation is less than 20 nm and the depen-
dence may be practically ignored. In Fig. 9, a strong de-
pendence of 6, on parameter 7) is seen as well.

The L dependencies of Figs. 7-9 demonstrate a similar
behavior, 8, (L) is constant for L >4a and elevates rapidly
with decreasing L. The constant value of 8, for a=0.1
um, H°=0.5 pm, y=2, and =0.9 is equal to 0.062,
where as for the same set of parameters the accuracy for
case a=0 is equal to 0.036 um [see Eq. (27)]. The differ-
ence characterizes the influence of beam size. The compar-
ison of the analytical method of the accuracy estimation
[Eq. (19)], with results of more complex ones (Figs. 7-9),
shows that the difference is about one to two tenth of a
only and for the structures with L greater than 4« relation
[Eq. (19)] can be recommended for the fast estimation of
the accuracy.
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The independence of 8, on 8 shows clearly that the
exact shape of wide ranges of proximity function 7, is not
important for estimation of accuracy 8, since a’/B°<l,
[the area exposed by primary electrons (a?) is much less
than the area exposed by backscattered ones (ﬁz}].

Note that it is impossible to obtain a structure consist-
ing of two elements lying in a circle of diameter less than a.
In the interval @ <L <4a where the error becomes too
high, the effect of spot size and forward scattering, char-
acterized by a, can be corrected in a second procedure for
example by calculating the necessary dose in a small frame
with a width of a along all structure edges by trial and
error method using the simulation.

X. CONCLUSION

Using the presented correction approach the accuracy
of the electron lithography is determined by the forward
scattering characterized by a. For the proximity correction
method of simple compensation, a maximum error could
be calculated which may appear after development.
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Whereas the mentioned correction method considers the
backscattered electrons (f and ) only, the estimation of
guaranteed accuracy considers also the beam size and for-
ward scattering (a) and the development process of posi-
tive resist as well. It results in the value of the accuracy
equal to a fraction of a.

Proximity correction below this guaranteed accuracy is
possible by using the simple compensation in iterations for
calculated zones and by correction for a inside a small
structure frame according to simulated results. It allows to
calculate suitable zone shapes of different doses for prox-
imity correction, and it considers a and the full develop-
ment process in simulation. Finally, the results of simula-
tion can be used for achieving ideal dose distributions for
experimental structures. These features make our proxim-
ity correction approach a powerful instrument for physical
studies of proximity effects in experimental lithography as
well as for reliable semiprofessional or professional e-beam
mask or wafer writing of smallest linewidth structures..

APPENDIX
Estimations of P(a,Q)

Let us find the lower P,;,(a) and the upper P, (a)
boundaries of

P(a,Q)= J’Q dx'dy' I,(x—x".y—y')
—a j dx' dy' I,(x—x'y—y')
¢

X J‘ dxn dyﬂ' Iz(x'—'xn,_l-" __yn')’
Q
2

1
Iﬂx,y):w exp( h%)’ p= (2442,

for arbitrary Q and fixed parameter a>0. Because the ex-
treme of P does not depend on 8 and point (x,y), we
assume f=1, x=0, and y=0. Minimum of P is found ven
easy. Rewrite P



P(a,QJz{l-—a)f dx"dy’' I,(x—x"y—y')
@Q
+a _[O ax'dy’ I(x—x",y—y')

X J- dx" dyﬂ' Iz(xf_xﬂ’y! “yn),
¢

¢ is a complement of origin Q. The second term in the
right part of the equation is positive, the first depend from
sign of Eq. (1a). The minimum of P is achieved

P (@)= 0, agl  (Q=0) '
l—a, a>1 (gF=0)
Let us now find P, (a). It is clear that
Prax(@) <maxG[ f],
where ’

GLf]= f dx' dy' L(x—x'y—y ) f(x'p")

x J- dx" dy" Iz{xl _xlf’yl _yﬂ')

X[1=af(x"y")],
and function 0<f(x,y)<1. In cylinder coordinates

1 = o
Glfl= L J; drdp rp exp(—2r—p?)

pi T
xJ- d¢ d exp[2rp cos(d—v) ]
o Jo .

xf(rd)[1—af(p.¥)].

The extremes of the G[f] are achieved on functions f
which does not depend on angle ¢. Let us show this. Find
the extremes of functional

T 2z
J;) o d¢ dyexp[b cos(¢—¥) 1/ (d)g(¥),

under conditions

2 ' 2w
f d/0=4, [ ds5(s)-5.

0
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For any & the extreme is achieved and f(&)=A4/2m, g(¢)
=B/2w. Really, find vanations of the functional

2T
J:, dy exp[b cos(é—v) Jg(¥) =4,

27

dp exp[bcos(d—v) 1 f () =B, '

(A,B-Lagrange’s factors). Statement is proved. So, we can
write functional G

Gl f]=2 er drrexp(—~)
0

—4g J: J: drdp rply(2rp) f(r) f(p),

I, is a modified Bessel function. This task can be numeri-
cally solved by method of the square programming. The
results of calculations P, (a) for different values of “a”
are as follows. (Error of the calculation less than 0.005.)

a 0 0.2 0.4 0.6 0.8 1
Prax 1 0.810 0.645 0507 0397 0.321

The calculated data may be approximated by

Ppax(a)=1—a+0.32d%

which is valid for a<1 (i.e., for any 7) with accuracy less
than 0.01. The substitution a=1 and a=17/(1+7) leads to

Eq. (26).
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